Sains Malaysiana 55(1)(2026): 169-179

http://doi.org/10.17576/jsm-2026-5501-13

 

Hydrolyzed Glucomannan-Maltodextrin Matrices for High-Efficiency Spray-Dried Iron Encapsulation

(Matriks Glukomanan-Maltodekstrin Terhidrolisis untuk Pengkapsulan Besi Kering-Sembur Berkecekapan Tinggi)

 

DYAH HESTI WARDHANI1,*, HERI CAHYONO1, HANA NIKMA ULYA1, RIZKA SAVIRA NOOR FAUZIA1, SALMA RAHMA DEWANTI1, ENI SUMARSIH1, ANDRI CAHYO KUMORO1, KHAIRUL ANAM2 & JOSÉ ANTONIO VÁZQUEZ3

 

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Tembalang, 50275, Semarang, Central Java, Indonesia

2Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Tembalang, 50275, Semarang, Central Java, Indonesia

3Instituto de Investigatións Mariñas (CSIC), Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), r/ Eduardo Cabello, 6. Vigo, 36208. Galicia, Spain

 

Diserahkan: 13 Ogos 2025/Diterima: 16 Januari 2026

 

Abstract

Efficient encapsulation of iron is crucial to enhance its stability, maintain functionality, and ensure cost-effective application in food systems. In this study, a novel encapsulation matrix combining hydrolyzed glucomannan and maltodextrin was developed to produce spray-dried iron particles with improved physicochemical properties. The effects of drying temperature (60-90 °C), glucomannan concentration (1-3%), and iron content (20-30 mg/g matrix) were systematically evaluated. Increasing these parameters significantly enhanced water-particle interactions, resulting in higher solubility, swelling capacity, and wettability. The best-performing formulation - 30 mg iron/g matrix, 3% hydrolyzed glucomannan, and 30% maltodextrin - achieved an encapsulation efficiency of 98.4%. Morphological and structural analyses showed that the particles contained uniformly distributed iron, had reduced particle size, and exhibited superior thermal stability. These characteristics not only contribute to improved storage stability but also facilitate rapid dispersion in aqueous systems, enhancing bioavailability potential. Overall, this work demonstrates the effectiveness of hydrolyzed glucomannan-maltodextrin blends as encapsulation matrices for producing stable, functional iron powders. The approach offers a promising, energy-efficient strategy for food fortification, with potential applications in addressing iron deficiency through more effective and consumer-friendly delivery systems.

Keywords: Encapsulation efficiency; engineering; morphology; thermal stability; water interaction

 

Abstrak

Pengkapsulan besi yang berkesan adalah penting untuk meningkatkan kestabilannya, mengekalkan fungsinya dan memastikan aplikasi yang menjimatkan kos dalam sistem makanan. Dalam kajian ini, satu matriks pengkapsulan baharu yang menggabungkan glukomanan terhidrolisis dan maltodekstrin telah dibangunkan untuk menghasilkan zarah besi kering-sembur dengan sifat fisikokimia yang dipertingkatkan. Kesan suhu pengeringan (60-90 °C), kepekatan glukomanan (1-3%) dan kandungan besi (20-30 mg/g matriks) telah dinilai secara sistematik. Peningkatan parameter ini dengan ketara memperkukuh interaksi air-zarah, menghasilkan kelarutan, kapasiti pembengkakan, kebasahan dan higroskopisiti yang lebih tinggi. Formulasi terbaik - 30 mg besi/g matriks, 3% glukomanan terhidrolisis dan 30% maltodekstrin-mencapai kecekapan pengkapsulan sebanyak 98.4%. Analisis morfologi dan struktur menunjukkan bahawa zarah mengandungi zat besi yang diedarkan secara seragam, mempunyai saiz zarah yang lebih kecil dan menunjukkan kestabilan terma yang unggul. Ciri ini bukan sahaja menyumbang kepada kestabilan penyimpanan yang lebih baik, tetapi juga memudahkan penyebaran pantas dalam sistem berair, meningkatkan potensi kebolehserapan bio. Secara keseluruhannya, kajian ini membuktikan keberkesanan gabungan glukomanan terhidrolisismaltodekstrin sebagai matriks pengkapsulan untuk menghasilkan serbuk besi yang stabil dan berfungsi. Pendekatan ini menawarkan strategi peneguhan makanan yang menjimatkan tenaga dengan potensi aplikasi dalam menangani kekurangan besi melalui sistem penghantaran yang lebih berkesan dan mesra pengguna.

Kata kunci: Kecekapan pengkapsulan; kestabilan terma; interaksi air; kejuruteraan; morfologi

 

RUJUKAN

Correâ-Filho et al. 2019

Akhavan Mahdavi, S., Jafari, S.M., Assadpoor, E. & Dehnad, D. 2016. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules 85: 379-385. https://doi.org/10.1016/j.ijbiomac.2016.01.011

Association of Official Analytical Chemistry (AOAC). 2005. Official Methods of Analysis. 16th ed. Virginia Arlington: Association of Official Analytical Chemistry.

Atalar, I., Besir, A. & Kurt, A. 2023. Agglomeration of gum tragacanth as a promising novel approach to structural modification. Powder Technology 426: 118672. https://doi.org/10.1016/j.powtec.2023.118672

Caliskan, G. & Nur Dirim, S. 2013. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing 91(4): 539-548. https://doi.org/10.1016/j.fbp.2013.06.004

Cano-Higuita, D.M., Malacrida, C.R. & Telis, V.R.N. 2015. Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch. Journal of Food Processing and Preservation 39(6): 2049-2060. https://doi.org/10.1111/jfpp.12448

Dadi, D.W., Emire, S.A., Hagos, A.D. & Eun, J.B. 2019. Effects of spray drying process parameters on the physical properties and digestibility of the microencapsulated product from Moringa stenopetala leaves extract. Cogent Food and Agriculture 5(1): 1690316. https://doi.org/10.1080/23311932.2019.1690316

Dehnad, D., Ghorani, B., Emadzadeh, B., Emadzadeh, M., Assadpour, E., Rajabzadeh, G. & Jafari, S.M. 2023. Recent advances in iron encapsulation and its application in food fortification. Critical Reviews in Food Science and Nutrition 64: 12685-12701. https://doi.org/10.1080/10408398.2023.2256004

Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A. & Omid, M. 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90(4): 667-675. https://doi.org/10.1016/j.fbp.2012.04.006

Ferrari, C.C., Germer, S.P.M. & de Aguirre, J.M. 2012. Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology 30(2): 154-163. https://doi.org/10.1080/07373937.2011.628429

Hardy, Z. & Jideani, V.A. 2018. Effect of spray drying compartment and maltodextrin concentration on the functional, physical, thermal, and nutritional characteristics of Bambara groundnut milk powder. Journal of Food Processing and Preservation 42(2): e13491. https://doi.org/10.1111/jfpp.13491

Huang, C., Wang, S. & Yang, H. 2020. Evaluation of thermal effects on the bioactivity of curcumin microencapsulated with porous starch-based wall material using spray drying. Processes 8(2): 172. https://doi.org/10.3390/pr8020172

Hurrell, R.F. 2021. Iron fortification practices and implications for iron addition to salt. Journal of Nutrition 151: 3S-14S. https://doi.org/10.1093/jn/nxaa175

Jafari, S.M., Ghalegi Ghalenoei, M. & Dehnad, D. 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology 311: 59-65. https://doi.org/10.1016/j.powtec.2017.01.070

Jia, R., Cui, C., Gao, L., Qin, Y., Ji, N., Dai, L., Wang, Y., Xiong, L., Shi, R. & Sun, Q. 2023. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydrate Polymers 321: 121260. https://doi.org/10.1016/j.carbpol.2023.121260

Karrar, E., Mahdi, A.A., Sheth, S., Mohamed Ahmed, I.A., Manzoor, M.F., Wei, W. & Wang, X. 2021. Effect of maltodextrin combination with gum Arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules 171: 208-216. https://doi.org/10.1016/j.ijbiomac.2020.12.045

Kaul, S., Kaur, K., Mehta, N., Dhaliwal, S. S., & Kennedy, J. F. 2022. Characterization and optimization of spray dried iron and zinc nanoencapsules based on potato starch and maltodextrin. Carbohydrate Polymers 282: 119107. https://doi.org/10.1016/j.carbpol.2022.119107

Khoshakhlagh, K., Koocheki, A., Mohebbi, M. & Allafchian, A. 2017. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of D-limonene. Journal of Colloid and Interface Science 490: 562-575. https://doi.org/10.1016/j.jcis.2016.11.067

Khosroyar, S., Akbarzade, A., Arjoman, M., Safekordi, A.A. & Mortazavi, S.A. 2012. Ferric – saccharate capsulation with alginate coating using the emulsification method. African Journal of Microbiology Research 6(10): 2455-2461. https://doi.org/10.5897/ajmr11.1514

Kurniasih, R.A., Purnamayati, L., Amalia, U. & Dewi, E.N. 2018. Formulation and characterization of phycocyanin microcapsules within maltodextrin- alginate. Agritech 38(1): 23-29.

Loksuwan, J. 2007. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids 21(5-6): 938-935. https://doi.org/10.1016/j.foodhyd.2006.10.011

Man, Y., Xu, T., Adhikari, B., Zhou, C., Wang, Y. & Wang, B. 2022. Iron supplementation and iron-fortified foods: A review. Critical Reviews in Food Science and Nutrition 62: 4504-4525. https://doi.org/10.1080/10408398.2021.1876623

Mohammed, J.K., Mahdi, A.A., Ma, C., Elkhedir, A.E., Al-Maqtari, Q.A., Al-Ansi, W., Mahmud, A. & Wang, H. 2021. Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: Preparation, characterization, and evaluating the storage stability and antioxidant activity. Journal of Food Measurement and Characterization 15(1): 155-169. https://doi.org/10.1007/s11694-020-00629-4

Pang, S.F., Yusoff, M.M. & Gimbun, J. 2014. Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids 37: 159-165. https://doi.org/10.1016/j.foodhyd.2013.10.022

Polekkad, A., Franklin, M.E.E., Pushpadass, H.A., Battula, S.N., Rao, S.B.N. & Pal, D.T. 2021. Microencapsulation of zinc by spray-drying: Characterisation and fortification. Powder Technology 381: 1-16. https://doi.org/10.1016/j.powtec.2020.12.009

Şahin-Nadeem, H., Dinçer, C., Torun, M., Topuz, A. & Özdemir, F. 2013. Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. LWT 52(1): 31-38. https://doi.org/10.1016/j.lwt.2013.01.007

Santhalakshmy, S., Don Bosco, S.J., Francis, S. & Sabeena, M. 2015. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology 274: 37-43. https://doi.org/10.1016/j.powtec.2015.01.016

Sari, N.I.P., Harmayani, E. & Santoso, U. 2023. Microencapsulation of sweet potato leaf (Ipomoea batatas L.) extract with different concentrations of glucomannan konjac and maltodextrin using spray drying method. Indonesian Food and Nutrition Progress 19(2): 57-64. https://doi.org/10.22146/ifnp.67167

Skřivan, P., Sluková, M., Jurkaninová, L. & Švec, I. 2021. Preliminary investigations on the use of a new milling technology for obtaining wholemeal flours. Applied Sciences (Switzerland) 11(13): 6138. https://doi.org/10.3390/app11136138

Srivastava, S., Bansal, M., Jain, D. & Srivastava, Y. 2022. Encapsulation for efficient spray drying of fruit juices with bioactive retention. Journal of Food Measurement and Characterization 16: 3792-3814. https://doi.org/10.1007/s11694-022-01481-4

Tay, J.B.J., Chua, X., Ang, C., Subramanian, G.S., Tan, S.Y., Lin, E.M.J., Wu, W.Y., Goh, K.K.T. & Lim, K. 2021. Effects of spray-drying inlet temperature on the production of high-quality native rice starch. Processes 9(9): 1557. https://doi.org/10.3390/pr9091557

Tsiura, N., Kindzera, D., Huzova, I. & Atamanyuk, V. 2021. Study of the kinetics of drying iron (ii) sulfate heptahydrate by filtration method. ScienceRise 1: 10-21. https://doi.org/10.21303/2313-8416.2021.001583

Tupuna, D.S., Paese, K., Guterres, S.S., Jablonski, A., Flôres, S.H. & de Oliveira Rios, A. 2018. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Industrial Crops and Products 111: 846-855. https://doi.org/10.1016/j.indcrop.2017.12.001

Wardhani, D.H., Ulya, H.N., Uqbah, Z.F., Pasaman, D.Y., Sumarsih, E., Kumoro, A.C. & Aryanti, N. 2025. Performances of combination of maltodextrin-alginate encapsulant in protecting spray-dried iron. Acta Alimentaria 54(1): 1-13. https://doi.org/10.1556/066.2024.00125

Wardhani, D.H., Abdullah, A., Maldini, A., Dyastama, H.K., Ulya, H.N. & Devara, H.R. 2024. Hydrolyzed glucomannan as an encapsulant for various iron concentrations using spray drying method. Food Research 8: 36-47. https://doi.org/10.26656/fr.2017.8(S1).6

Wardhani, D.H., Wardana, I.N., Ulya, H.N., Kumoro, A.C. & Aryanti, N. 2023. Properties of spray-dried iron microcapsule using hydrolysed glucomannan as encapsulant: Effect of feed viscosity. Sains Malaysiana 52(6): 1699-1710. https://doi.org/10.17576/jsm-2023-5206-07

Wardhani, D.H., Cahyono, H., Ulya, H.N., Kumoro, A.C., Anam, K. & Vázquez, J.A. 2022. Spray-dryer feed preparation: Enzymatic degradation of glucomannan for iron nanoencapsulation. AIMS Agriculture and Food 7(3): 683-703. https://doi.org/10.3934/agrfood.2022042

Wardhani, D.H., Ulya, H.N., Rahmawati, A., Sugiarto, T.V.K., Kumoro, A.C. & Aryanti, N. 2021. Preparation of degraded alginate as a pH-dependent release matrix for spray-dried iron and its encapsulation performances. Food Bioscience 41: 101002. https://doi.org/10.1016/j.fbio.2021.101002

Wardhani, D.H., Wardana, I.N., Ulya, H.N., Cahyono, H., Kumoro, A.C. & Aryanti, N. 2020. The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing 123: 72-79. https://doi.org/10.1016/j.fbp.2020.05.013

Wardhani, D.H., Aryanti, N., Etnanta, F.N. & Ulya, H.N. 2019. Modification of glucomannan of Amorphophallus oncophyllus as an excipient for iron encapsulation performed using the gelation method. Acta Scientiarum Polonorum, Technologia Alimentaria 18(2): 173-184. https://doi.org/10.17306/J.AFS.2019.0651

Wijayanti, N., Widyaningsih, T.D., Wulan, S.N. & Rifai, M. 2024. Influence of spray drying inlet temperature on the physical properties and antioxidant activity of black garlic extract powder. Trends in Sciences 21(2): 7247-7247. https://doi.org/10.48048/tis.2024.7247

Yang, J., Xiao, J.X. & Ding, L.Z. 2009. An investigation into the application of konjac glucomannan as a flavor encapsulant. European Food Research and Technology 229(3): 467-474. https://doi.org/10.1007/s00217-009-1084-2

Yousefi, S., Emam-Djomeh, Z. & Mousavi, S.M. 2011. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology 48(6): 677-684. https://doi.org/10.1007/s13197-010-0195-x

Yun, P., Devahastin, S. & Chiewchan, N. 2021. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Comprehensive Reviews in Food Science and Food Safety 20: 1768-1799. https://doi.org/10.1111/1541-4337.12701

Zhao, Y., Wang, J., Zhang, Y., He, R., Du, Y. & Zhong, G. 2024. Hydration properties and mesoscopic structures of different depolymerized konjac glucomannan: Experiments and molecular dynamics simulations. Food Hydrocolloids 151: 109853. https://doi.org/10.1016/j.foodhyd.2024.109853

Zimmermann, M.B. & Windhab, E.J. 2010. Encapsulation of iron and other micronutrients for food fortification. In Encapsulation Technologies for Active Food Ingredients and Food Processing, edited by Zuidam, N. & Nedovic, V. New York: Springer. https://doi.org/10.1007/978-1-4419-1008-0_7

 

*Pengarang untuk surat-menyurat; email: dhwardhani@che.undip.ac.id

 

 

 

 

 

 

 

 

 

           

sebelumnya