Sains Malaysiana 55(1)(2026): 169-179
http://doi.org/10.17576/jsm-2026-5501-13
Hydrolyzed Glucomannan-Maltodextrin Matrices for High-Efficiency Spray-Dried Iron
Encapsulation
(Matriks Glukomanan-Maltodekstrin Terhidrolisis untuk Pengkapsulan Besi Kering-Sembur Berkecekapan Tinggi)
DYAH HESTI WARDHANI1,*, HERI CAHYONO1,
HANA NIKMA ULYA1, RIZKA SAVIRA NOOR FAUZIA1, SALMA RAHMA DEWANTI1, ENI SUMARSIH1,
ANDRI CAHYO KUMORO1, KHAIRUL ANAM2 & JOSÉ ANTONIO VÁZQUEZ3
1Department of Chemical Engineering, Faculty
of Engineering, Diponegoro University, Tembalang, 50275, Semarang, Central Java, Indonesia
2Department of Chemistry, Faculty of Science
and Mathematics, Diponegoro University, Tembalang, 50275, Semarang, Central Java, Indonesia
3Instituto
de Investigatións Mariñas (CSIC), Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), r/ Eduardo Cabello, 6. Vigo, 36208. Galicia, Spain
Diserahkan: 13 Ogos
2025/Diterima: 16 Januari 2026
Abstract
Efficient encapsulation of iron is crucial to enhance its
stability, maintain functionality, and ensure cost-effective application in
food systems. In this study, a novel encapsulation matrix combining hydrolyzed
glucomannan and maltodextrin was developed to produce spray-dried iron
particles with improved physicochemical properties. The effects of drying
temperature (60-90 °C), glucomannan concentration (1-3%), and iron content (20-30
mg/g matrix) were systematically evaluated. Increasing these parameters
significantly enhanced water-particle interactions, resulting in higher
solubility, swelling capacity, and wettability. The best-performing formulation
- 30 mg iron/g matrix, 3% hydrolyzed glucomannan, and 30% maltodextrin - achieved
an encapsulation efficiency of 98.4%. Morphological and structural analyses showed
that the particles contained uniformly distributed iron, had reduced particle
size, and exhibited superior thermal stability. These characteristics not only
contribute to improved storage stability but also facilitate rapid dispersion
in aqueous systems, enhancing bioavailability potential. Overall, this work
demonstrates the effectiveness of hydrolyzed glucomannan-maltodextrin blends as
encapsulation matrices for producing stable, functional iron powders. The
approach offers a promising, energy-efficient strategy for food fortification,
with potential applications in addressing iron deficiency through more
effective and consumer-friendly delivery systems.
Keywords: Encapsulation efficiency; engineering; morphology; thermal stability;
water interaction
Abstrak
Pengkapsulan besi yang berkesan adalah penting untuk meningkatkan kestabilannya, mengekalkan fungsinya dan memastikan aplikasi yang menjimatkan kos dalam sistem makanan. Dalam kajian ini, satu matriks pengkapsulan baharu yang menggabungkan glukomanan terhidrolisis dan maltodekstrin telah dibangunkan untuk menghasilkan zarah besi kering-sembur dengan sifat fisikokimia yang dipertingkatkan. Kesan suhu pengeringan (60-90 °C), kepekatan glukomanan (1-3%) dan kandungan besi (20-30 mg/g matriks) telah dinilai secara sistematik. Peningkatan parameter ini dengan ketara memperkukuh interaksi air-zarah, menghasilkan kelarutan, kapasiti pembengkakan, kebasahan dan higroskopisiti yang lebih tinggi. Formulasi terbaik - 30 mg besi/g matriks, 3% glukomanan terhidrolisis dan 30% maltodekstrin-mencapai kecekapan pengkapsulan sebanyak 98.4%. Analisis morfologi dan struktur menunjukkan bahawa zarah mengandungi zat besi yang diedarkan secara seragam, mempunyai saiz zarah yang lebih kecil dan menunjukkan kestabilan terma yang unggul. Ciri ini bukan sahaja menyumbang kepada kestabilan penyimpanan yang lebih baik, tetapi juga memudahkan penyebaran pantas dalam sistem berair, meningkatkan potensi kebolehserapan bio. Secara keseluruhannya, kajian ini membuktikan keberkesanan gabungan glukomanan terhidrolisis–maltodekstrin sebagai matriks pengkapsulan untuk menghasilkan serbuk besi yang stabil dan berfungsi. Pendekatan ini menawarkan strategi peneguhan makanan yang menjimatkan tenaga dengan potensi aplikasi dalam menangani kekurangan besi melalui sistem penghantaran yang lebih berkesan dan mesra pengguna.
Kata kunci: Kecekapan pengkapsulan; kestabilan terma; interaksi air; kejuruteraan; morfologi
RUJUKAN
Correâ-Filho et al. 2019
Akhavan Mahdavi, S., Jafari, S.M., Assadpoor, E. & Dehnad, D.
2016. Microencapsulation optimization of natural anthocyanins with
maltodextrin, gum Arabic and gelatin. International Journal of Biological
Macromolecules 85: 379-385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
Association of Official Analytical
Chemistry (AOAC). 2005. Official Methods
of Analysis. 16th ed. Virginia Arlington: Association of Official
Analytical Chemistry.
Atalar, I., Besir, A. & Kurt, A. 2023. Agglomeration of gum
tragacanth as a promising novel approach to structural modification. Powder
Technology 426: 118672.
https://doi.org/10.1016/j.powtec.2023.118672
Caliskan, G. & Nur Dirim, S.
2013. The effects of the different drying conditions and the amounts of
maltodextrin addition during spray drying of sumac extract. Food and
Bioproducts Processing 91(4): 539-548.
https://doi.org/10.1016/j.fbp.2013.06.004
Cano-Higuita,
D.M., Malacrida, C.R. & Telis, V.R.N. 2015. Stability
of curcumin microencapsulated by spray and freeze drying in binary and ternary
matrices of maltodextrin, gum arabic and modified
starch. Journal of Food Processing and Preservation 39(6): 2049-2060.
https://doi.org/10.1111/jfpp.12448
Dadi, D.W., Emire, S.A., Hagos, A.D.
& Eun, J.B. 2019. Effects of spray drying process
parameters on the physical properties and digestibility of the
microencapsulated product from Moringa stenopetala leaves extract. Cogent Food and
Agriculture 5(1): 1690316. https://doi.org/10.1080/23311932.2019.1690316
Dehnad, D., Ghorani, B., Emadzadeh, B., Emadzadeh, M., Assadpour, E., Rajabzadeh, G.
& Jafari, S.M. 2023. Recent advances in iron encapsulation and its
application in food fortification. Critical Reviews in Food Science and
Nutrition 64: 12685-12701. https://doi.org/10.1080/10408398.2023.2256004
Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A. & Omid,
M. 2012. Effect of spray drying conditions and feed composition on the physical
properties of black mulberry juice powder. Food and Bioproducts Processing 90(4): 667-675.
https://doi.org/10.1016/j.fbp.2012.04.006
Ferrari, C.C., Germer, S.P.M. &
de Aguirre, J.M. 2012. Effects of spray-drying conditions on the
physicochemical properties of blackberry powder. Drying Technology 30(2):
154-163. https://doi.org/10.1080/07373937.2011.628429
Hardy, Z. & Jideani,
V.A. 2018. Effect of spray drying compartment and maltodextrin concentration on
the functional, physical, thermal, and nutritional characteristics of Bambara
groundnut milk powder. Journal of Food Processing and Preservation 42(2): e13491. https://doi.org/10.1111/jfpp.13491
Huang, C., Wang, S. & Yang, H.
2020. Evaluation of thermal effects on the bioactivity of curcumin
microencapsulated with porous starch-based wall material using spray drying. Processes 8(2): 172. https://doi.org/10.3390/pr8020172
Hurrell, R.F. 2021. Iron
fortification practices and implications for iron addition to salt. Journal
of Nutrition 151: 3S-14S. https://doi.org/10.1093/jn/nxaa175
Jafari, S.M., Ghalegi Ghalenoei, M. & Dehnad,
D. 2017. Influence of spray drying on water solubility index, apparent density,
and anthocyanin content of pomegranate juice powder. Powder Technology 311: 59-65.
https://doi.org/10.1016/j.powtec.2017.01.070
Jia, R., Cui, C., Gao, L., Qin, Y.,
Ji, N., Dai, L., Wang, Y., Xiong, L., Shi, R. & Sun, Q. 2023. A review of
starch swelling behavior: Its mechanism, determination methods, influencing
factors, and influence on food quality. Carbohydrate Polymers 321: 121260. https://doi.org/10.1016/j.carbpol.2023.121260
Karrar, E., Mahdi, A.A., Sheth, S.,
Mohamed Ahmed, I.A., Manzoor, M.F., Wei, W. & Wang, X. 2021. Effect of
maltodextrin combination with gum Arabic and whey protein isolate on the
microencapsulation of gurum seed oil using a spray-drying
method. International Journal of Biological Macromolecules 171: 208-216.
https://doi.org/10.1016/j.ijbiomac.2020.12.045
Kaul, S., Kaur, K., Mehta, N.,
Dhaliwal, S. S., & Kennedy, J. F. 2022. Characterization and optimization
of spray dried iron and zinc nanoencapsules based on
potato starch and maltodextrin. Carbohydrate Polymers 282: 119107.
https://doi.org/10.1016/j.carbpol.2022.119107
Khoshakhlagh, K., Koocheki, A., Mohebbi, M.
& Allafchian, A. 2017. Development and
characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of D-limonene. Journal of Colloid
and Interface Science 490: 562-575.
https://doi.org/10.1016/j.jcis.2016.11.067
Khosroyar, S., Akbarzade, A., Arjoman, M., Safekordi, A.A.
& Mortazavi, S.A. 2012. Ferric – saccharate capsulation with alginate
coating using the emulsification method. African Journal of Microbiology
Research 6(10): 2455-2461. https://doi.org/10.5897/ajmr11.1514
Kurniasih, R.A., Purnamayati, L., Amalia,
U. & Dewi, E.N. 2018. Formulation and characterization of phycocyanin
microcapsules within maltodextrin- alginate. Agritech 38(1): 23-29.
Loksuwan, J. 2007. Characteristics of microencapsulated
β-carotene formed by spray drying with modified tapioca starch, native
tapioca starch and maltodextrin. Food Hydrocolloids 21(5-6): 938-935.
https://doi.org/10.1016/j.foodhyd.2006.10.011
Man, Y., Xu, T., Adhikari, B., Zhou,
C., Wang, Y. & Wang, B. 2022. Iron supplementation and iron-fortified
foods: A review. Critical Reviews in Food Science and Nutrition 62: 4504-4525.
https://doi.org/10.1080/10408398.2021.1876623
Mohammed, J.K., Mahdi, A.A., Ma, C., Elkhedir, A.E., Al-Maqtari,
Q.A., Al-Ansi, W., Mahmud, A. & Wang, H. 2021. Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: Preparation,
characterization, and evaluating the storage stability and antioxidant
activity. Journal of Food Measurement and Characterization 15(1): 155-169.
https://doi.org/10.1007/s11694-020-00629-4
Pang, S.F., Yusoff, M.M. &
Gimbun, J. 2014. Assessment of phenolic compounds stability and retention
during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids 37:
159-165. https://doi.org/10.1016/j.foodhyd.2013.10.022
Polekkad, A., Franklin, M.E.E., Pushpadass,
H.A., Battula, S.N., Rao, S.B.N. & Pal, D.T.
2021. Microencapsulation of zinc by spray-drying: Characterisation and fortification. Powder Technology 381: 1-16.
https://doi.org/10.1016/j.powtec.2020.12.009
Şahin-Nadeem, H., Dinçer, C.,
Torun, M., Topuz, A. & Özdemir, F. 2013. Influence of inlet air temperature
and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. LWT 52(1): 31-38.
https://doi.org/10.1016/j.lwt.2013.01.007
Santhalakshmy, S., Don Bosco, S.J., Francis, S. & Sabeena, M. 2015.
Effect of inlet temperature on physicochemical properties of spray-dried jamun
fruit juice powder. Powder Technology 274: 37-43.
https://doi.org/10.1016/j.powtec.2015.01.016
Sari, N.I.P., Harmayani,
E. & Santoso, U. 2023. Microencapsulation of sweet potato leaf (Ipomoea batatas L.) extract with
different concentrations of glucomannan konjac and maltodextrin using spray
drying method. Indonesian Food and Nutrition Progress 19(2): 57-64.
https://doi.org/10.22146/ifnp.67167
Skřivan, P., Sluková, M., Jurkaninová, L. & Švec, I. 2021. Preliminary
investigations on the use of a new milling technology for obtaining wholemeal flours. Applied Sciences (Switzerland) 11(13): 6138. https://doi.org/10.3390/app11136138
Srivastava, S., Bansal, M., Jain, D.
& Srivastava, Y. 2022. Encapsulation for efficient spray drying of fruit
juices with bioactive retention. Journal of Food Measurement and
Characterization 16: 3792-3814.
https://doi.org/10.1007/s11694-022-01481-4
Tay, J.B.J., Chua, X., Ang, C.,
Subramanian, G.S., Tan, S.Y., Lin, E.M.J., Wu, W.Y., Goh, K.K.T. & Lim, K.
2021. Effects of spray-drying inlet temperature on the production of
high-quality native rice starch. Processes 9(9): 1557.
https://doi.org/10.3390/pr9091557
Tsiura, N., Kindzera, D., Huzova, I.
& Atamanyuk, V. 2021. Study of the kinetics of
drying iron (ii) sulfate heptahydrate by filtration method. ScienceRise 1: 10-21.
https://doi.org/10.21303/2313-8416.2021.001583
Tupuna, D.S., Paese, K., Guterres,
S.S., Jablonski, A., Flôres, S.H. & de Oliveira Rios,
A. 2018. Encapsulation efficiency and thermal stability of norbixin
microencapsulated by spray-drying using different combinations of wall
materials. Industrial Crops and Products 111: 846-855. https://doi.org/10.1016/j.indcrop.2017.12.001
Wardhani, D.H., Ulya, H.N., Uqbah, Z.F., Pasaman, D.Y., Sumarsih, E., Kumoro, A.C. & Aryanti, N. 2025. Performances of combination of
maltodextrin-alginate encapsulant in protecting spray-dried iron. Acta Alimentaria 54(1): 1-13. https://doi.org/10.1556/066.2024.00125
Wardhani, D.H., Abdullah, A., Maldini, A., Dyastama,
H.K., Ulya, H.N. & Devara, H.R. 2024. Hydrolyzed
glucomannan as an encapsulant for various iron concentrations using spray
drying method. Food Research 8: 36-47.
https://doi.org/10.26656/fr.2017.8(S1).6
Wardhani, D.H., Wardana, I.N., Ulya, H.N., Kumoro, A.C. & Aryanti, N. 2023. Properties of spray-dried iron
microcapsule using hydrolysed glucomannan as
encapsulant: Effect of feed viscosity. Sains Malaysiana 52(6): 1699-1710.
https://doi.org/10.17576/jsm-2023-5206-07
Wardhani, D.H., Cahyono, H., Ulya, H.N., Kumoro, A.C., Anam, K. & Vázquez, J.A. 2022. Spray-dryer feed
preparation: Enzymatic degradation of glucomannan for iron nanoencapsulation. AIMS
Agriculture and Food 7(3): 683-703. https://doi.org/10.3934/agrfood.2022042
Wardhani, D.H., Ulya, H.N., Rahmawati, A., Sugiarto, T.V.K., Kumoro,
A.C. & Aryanti, N. 2021. Preparation of degraded
alginate as a pH-dependent release matrix for spray-dried iron and its
encapsulation performances. Food Bioscience 41: 101002.
https://doi.org/10.1016/j.fbio.2021.101002
Wardhani, D.H., Wardana, I.N., Ulya, H.N.,
Cahyono, H., Kumoro, A.C. & Aryanti,
N. 2020. The effect of spray-drying inlet conditions on iron encapsulation
using hydrolysed glucomannan as a matrix. Food and
Bioproducts Processing 123:
72-79. https://doi.org/10.1016/j.fbp.2020.05.013
Wardhani, D.H., Aryanti, N., Etnanta, F.N. & Ulya, H.N.
2019. Modification of glucomannan of Amorphophallus oncophyllus as an excipient for iron encapsulation
performed using the gelation method. Acta Scientiarum Polonorum, Technologia Alimentaria 18(2): 173-184.
https://doi.org/10.17306/J.AFS.2019.0651
Wijayanti, N., Widyaningsih, T.D., Wulan, S.N. & Rifai, M. 2024. Influence of spray drying
inlet temperature on the physical properties and antioxidant activity of black
garlic extract powder. Trends in Sciences 21(2): 7247-7247.
https://doi.org/10.48048/tis.2024.7247
Yang, J., Xiao, J.X. & Ding, L.Z.
2009. An investigation into the application of konjac glucomannan as a flavor
encapsulant. European Food Research and Technology 229(3): 467-474.
https://doi.org/10.1007/s00217-009-1084-2
Yousefi, S., Emam-Djomeh,
Z. & Mousavi, S.M. 2011. Effect of carrier type and spray drying on the
physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food
Science and Technology 48(6): 677-684. https://doi.org/10.1007/s13197-010-0195-x
Yun, P., Devahastin,
S. & Chiewchan, N. 2021. Microstructures of
encapsulates and their relations with encapsulation efficiency and controlled
release of bioactive constituents: A review. Comprehensive Reviews in Food
Science and Food Safety 20: 1768-1799.
https://doi.org/10.1111/1541-4337.12701
Zhao, Y., Wang, J., Zhang, Y., He,
R., Du, Y. & Zhong, G. 2024. Hydration properties and mesoscopic structures
of different depolymerized konjac glucomannan: Experiments and molecular
dynamics simulations. Food Hydrocolloids 151:
109853. https://doi.org/10.1016/j.foodhyd.2024.109853
Zimmermann, M.B. & Windhab, E.J. 2010. Encapsulation of iron and other
micronutrients for food fortification. In Encapsulation Technologies for Active
Food Ingredients and Food Processing, edited by Zuidam,
N. & Nedovic, V. New York: Springer. https://doi.org/10.1007/978-1-4419-1008-0_7
*Pengarang untuk surat-menyurat; email: dhwardhani@che.undip.ac.id